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SUMMARY 
A time-implicit numerical method for solving unsteady incompressible viscous flow problems is introduced. 
The method is based on introducing intermediate compressibility into a projection scheme to obtain 
a Helmholtz equation for a pressure-type variable. The intermediate compressibility increases the diagonal 
dominance of the discretized pressure equation so that the Helmholtz pressure equation is relatively easy to 
solve numerically. The Helmholtz pressure equation provides an iterative method for satisfying the 
continuity equation for time-implicit Navier-Stokes algorithms. An iterative scheme is used to simultan- 
eously satisfy, within a given tolerance, the velocity divergence-free condition and momentum equations at 
each time step. Collocated primitive variables on a non-staggered finite difference mesh are used. The 
method is applied to an unsteady Taylor problem and unsteady laminar flow past a circular cylinder. 
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INTRODUCTION 

The equations of motion for a two-dimensional, unsteady incompressible viscous fluid are 

a, t~+d, (E-E, )+a, (F-  F,)+Vp=O, (14 

(W v u = a,u + a,u = 0, 

where 
u=(u, u } ~ ,  E = { u Z ,  U U } ~ ,  F=(uu, u2}=, Vp=(d,p, a , ~ } ~ ,  

E, = Re- (28~4, (a, u + a , ~ ) } ~ ,  F, = Re- { (a,u + a,u), 2 8 , ~ ) ~ .  

Here p is the pressure, u and u are the Cartesian velocity components and superscript T indicates 
transpose. The above equations are written in dimensionless form. The Cartesian co-ordinates 
x and y are non-dimensionalized by a reference length Lref. The Cartesian velocities u and v are 
normalized by a reference velocity Uref. The time t is non-dimensionalized with respect to 
Lrcf/Uref and the pressure is normalized by pU:ef. The density p is simply a constant. The 
Reynolds number is defined as Re=pUrefLref/p, where p is the fluid viscosity. The pressure field 
must be computed so that equation (lb) is satisfied. For incompressible flow this can involve 
deriving an explicit relation for the pressure from equations (la) and (lb). This is one of the 
fundamental problems of steady or unsteady incompressible flow calculations. 
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The goal of the current paper is to develop a time-accurate incompressible flow calculation 
methodology based on a Helmholtz pressure equation 

(2) Q(6p)  - v . U V ( G P )  = - v . uProvisiona1 

where aV(6p) = ~Provisiona' - unew and R is the Helmholtz parameter. The function 6 p  can be 
interpreted as a pressure increment that helps to drive the velocity field to a divergence-free 
condition. 

Straightforward time advancement is not possible for the incompressible flow equations. This 
is due to a lack of a time-derivative term in the continuity equation and because the appropriate 
pressure field is linked to the velocity divergence-free condition. The most common methods that 
are used to solve the unsteady incompressible flow equations involve a Poisson equation for the 
pressure or a pressure-type variable. The marker-in-cell method (MAC) or the simplified MAC 
(SMAC)' and the projection method2 are examples of such a method. Pressure correction 
schemes3 also involve solving a Poisson-type equation. In the following sections these methods 
will be referred to as projection methods. 

The projection-type schemes are fractional step methods in which the velocity field is decom- 
posed into a field that has a specified divergence and a general field that carries vorticity. The 
general velocity field that carries vorticity is provisional in nature since it does not necessarily 
satisfy the divergence-free condition required by the continuity equation. The velocity field that 
has a specified divergence serves as a velocity correction which helps satisfy the continuity 
condition. A provisional velocity field is calculated from the momentum equations and then 
a pressure field is calculated so that the corrected velocity field satisfies the incompressibility 
condition. If the provisional velocity field is calculated using a time-explicit discretization, 
additional iterations are not required since the corrected velocity field and pressure field will 
satisfy the momentum equations and the continuity equation after the correction step.4 These 
schemes are only conditionally stable because of their explicit nature. Small time steps are often 
necessary owing to stability considerations and consequently the application of these schemes to 
practical problems can require extensive computational effort to integrate the equations to time 
levels of interest. 

Several variants of the projection method have been developed3, - ' These methods increase 
the numerical stability bounds by introducing implicitness into the discretized equations. The 
discretized governing equations then become a non-linear algebraic system. The simple two-step 
procedure used for an explicit projection method must usually be supplemented by additional 
iterations because of the implicit nature of the equations. These additional iterations are required 
to solve the implicit momentum equations' and in some methods additional iterations are 
required to simultaneously satisfy the momentum and continuity eq~at ions.~ The increased 
stability bounds and larger time steps that can be used for time integration usually offset any 
increase in computational time required for the additional iterations. This is the main attraction 
of implicit-type schemes. 

An informative discussion on the theoretical and practical aspects of projection schemes is 
presented by Gresho.6 

Whether the discretization is implicit or explicit, a Poisson equation still has to be solved for 
projection methods. The accurate solution of the Poisson equation is not trivial and is the most 
time-consuming part of projection  algorithm^.^ If the projection method is completely implicit in 
time, then it may be required to solve the pressure Poisson equation several times before 
advancing to the next time level. 

Since multiple iterations are necessary to solve the non-linear algebraic system representing the 
governing equations, it seems logical to derive an algorithm that will enforce the velocity 
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divergence condition in an iterative fashion without the need to satisfy a Poisson-type expression. 
Such a method was developed by Chorin for steady state problems.'' The method introduces 
artificial or pseudo-compressibility into the continuity equation. An iterative time-accurate 
pseudo-compressibility method is discussed by P e ~ r e t . ~  Chorin's method illustrates the technique 
of using physical principles to modify a governing equation to obtain an equation whose solution 
may be easier to obtain and yet has the same asymptotic solution as the unmodified equation. 

One of the nice things about Poisson-type algorithms is that pressure perturbations are 
propagated at a speed similar to the incompressible speed of sound. However, the pressure 
Poisson equation is computationally expensive to solve and it seems inefficient to have to solve it 
accurately many times whenever a time-implicit scheme is used for the governing equations. On 
the other hand, the pseudo-compressible pressure equation is very easy to solve (the equation has 
strong diagonal dominance) but is hyperbolic in nature, so pressure perturbations are propagated 
at a speed that depends on the amount of pseudo-compressibility. With the introduction of 
pseudo-compressibility the governing equatio'ns become similar to the compressible flow equa- 
tions (minus the thermal energy equation) and thus exhibit hyperbolic-type behaviour. 

Williams1 '9 l 2  developed a Helmholtz equation for a pressure-type variable for the solution of 
steady incompressible flows. The principle of the method consists of introducing an amount of 
pseudo-compressibility into a projection (velocity decomposition) type scheme to obtain an 
expression for a pressure variable. The key feature of the Helmholtz pressure equation is that it is 
relatively easy to solve and propagates pressure perturbations at infinite speed. 

A time-accurate algorithm suitable for the solution of unsteady incompressible flow problems 
is presented here. The theory of the Helmholtz pressure equation method is presented. An 
unsteady flow algorithm based on irnpEicit time discretization, successive iteration5 and the 
Helmholtz pressure equation is then developed. Key differences between the current method and 
explicit and semi-implicit projection schemes are discussed. The algorithm is applied to a Taylor 
problem for which an exact solution is available and to the unsteady laminar flow past a circular 
cylinder. 

HELMHOLTZ PRESSURE EQUATION 

The motivation for deriving the Helmholtz pressure equation" is to get an equation that is 
computationally easy to solve like the pseudo-compressible pressure equation yet propagates 
pressure perturbations at infinite speed like the Poisson-based schemes. 

Velocity decomposition methods split the velocity field into two parts: a part that has 
a specified divergence or dilatation and a part that can carry vorticity. The part that has 
a specified divergence is a zero-curl vector field and therefore can be written as the gradient of 
some scalar (i.e. a potential) and can be used to calculate a corrected velocity field that has zero 
divergence. This decomposition technique will be used in deriving the Helmholtz pressure 
equation. 

A vector field V(6p)  can be defined such that 

u m +  = u - aV(Gp), (3) 
where 6p is some potential, c1 is a 2 x 2 diagonal matrix that depends on the form of the iterative 
equation used to solve the momentum equation, rn indicates the iteration level and u is evaluated 
at a level before urn+ '. For the unsteady algorithm presented here a= At [I], where [ I ]  is a 2 x 2 
identity marix. 
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The function 6 p  is calculated by taking the divergence of equation (3) and assuming that 
V urn+ ' = - bV - u - R(6p) rather than zero (traditional projection methods enforce V - urn+ ' = 0): 

R(6p)- v * aV(6p) = -(1+ b)V ' u. (4) 

The amount of corrected compressibility V urn+' is referred to as pseudo- or intermediate 
compressibility. R is referred to as the pseudo-diffusion'' or the Helmholtz parameter and b is the 
pseudo-compressibility parameter used in Chorin's pseudo-compressible pressure equation." 
For time-accurate solutions it appears that the Helmholtz parameter should be chosen so that 
Rx At. This will help maintain order-of-magnitude consistency with the term V * uV(6p) since 
ax At. 

In the limit R, b<< 1 a Poisson-type pressure equation is obtained; in the limit R, b 9  1 the 
pseudo-compressible pressure equation is obtained. 

The expression V * urn+ ' = - bV - u-R(6p) can be thought of as some sort of Taylor series 
expansion for the velocity divergence, but this expression is not unique. An alternative derivation 
by Williams" uses V*urn+' = -R(6p). The only reason for including bV-u is so that the limiting 
processes (e.g. R, b<< 1) can be clearly seen. In the following sections this term will be neglected 
and the Helmholtz pressure equation is given as 

R(6p)-V * aV(6p) = -v - u. (5 )  

Equation (5) is still elliptic in character but resembles Helmholtz equations commonly used in 
acoustic theory. The boundary conditions for the Helmholtz equation are the same as the 
conditions used for Poisson-type equations,* i.e. Neumann boundary conditions. 

The set of algebraic equations resulting from the discretization of equation (5 )  can be written as 
(assuming R is a constant) 

(W1+ CAI) {6P) = {f). (6) 

L-A1 { S P )  = {fl, (7) 

The standard Poisson equation (V * aV(6p) = V * u) is written as 

where the diagonal elements of the matrix [ A ]  are assumed to be greater than zero. The matrix 
spectral radius norms are ordered as II (R[Z] + [ A ] ) - '  II H.pressc II[A]-' IIPoisson so an iterative 
solution of the Helmholtz pressure equation will be easier to obtain than the corresponding 
Poisson solution. This will be true for R > 0. This analysis suggests that an alternative to having 
R be a constant would be to select R to be a diagonal matrix whose elements consist of the 
diagonal of the matrix [ A ] ,  i.e. [R] =diag[A]. The assumption that the diagonal elements of the 
matrix [ A ]  have to be positive would then be unnecessary. 

The key feature of equation (5 )  is that only a few iterations are needed to solve it since 
51 increases the diagonal dominance of the discretized equations. A pressure equation that is 
relatively easy to solve is obtained at the expense of having V*urn+'= -R(6p) instead of 
v * Urn+ 1 = 0. 

The performance of the Helmholtz pressure equation for a steady state laminar flow is shown 
in Figure 1. This figure dramatically shows that as SZ gets smaller, more time is spent trying to get 
a solution to the pressure equation. Small R corresponds to a Poisson approach. This confirms 
the observation by Pericg that a large proportion of the computational budget is spent solving the 
pressure equation when a Poisson approach is used. When R becomes large, a pseudo-compress- 
ible formulation is approached. Very few iterations are required to solve the pressure equation 
since it becomes strongly diagonalized for large R. However, more global iterations are required 
to obtain a converged solution since the pressure wave magnitude and speed are smaller than 
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Figure 1. Performance of Helmholtz pressure equation 

required. These calculation results are from a driven square cavity laminar flow (Re=400) 
computed with a 51 x 51 uniform mesh." There is no special significance to the exact values used 
for a; odd-looking values appear in Figure 1 because R was scaled with other relaxation 
parameters used in the computations. 

UNSTEADY FLOW ALGORITHM 

The algorithm for solving equations (la) and (lb) can now be formulated as an iterative 
scheme.', 5 9 6 7 8  A Euler implicit scheme will be used for the current discussion but more elaborate 
and accurate schemes can be used if desired. The form of the momentum equation discretized in 
time is 

( L I " ~ ~  - u")/At + 8,(E - Ev)"sm + d,(F - F,)", + Vpn*m-l = S"*"- ', (8) 

En."= (UnUc9m,  UnD%m}T, (84 

(8b) 

where 

u n , O -  n --u 9 

with similar expressions for the other terms. The index n indicates the time level and t = nAt; m is 
the inner iteration or fractional step level, where m = 1,2, . . . , M- 1; the counter M indicates the 
total number of fractional steps or inner iterations, e.g. u"+l =unVM . Non-linear terms are 
linearized about the time level n. For example, the non-linear term u"+'u"+' arising from the 
momentum convection terms is written as 

(9) U n + l  U n + l  x u n u ~ + l + ( u n + l ~ u n ) u n ~  
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In the iteration notation this term is written as 

u")u". (10) u n + l  n + l  u"un. m + (u"3 m - 1 - 

The source term S handles iterative changes in the non-linear convection terms, such as the 
second term on the right-hand side of equation (lo), and can include any other source terms due 
to time linearization. For example, 

_ s n , m - l -  - a, { (U"'m- -u")u", ( u " . m - l  - U " ) u " } T + a y { ( U " ~ m - l - u " ) U n ,  ( u " ~ m - l - u " ) 0 " } T .  (11) 
The intermediate or provisional velocity u " , ~  carries the exact vorticity but does not necessarily 

satisfy the continuity equation.6 To help satisfy the continuity equation, the Helmholtz pressure 
equation is solved 

O(6p) - V * aV(Gp) = - V * u " , ~ ,  (12) 

(13) 

+W,V(bP), (14) 

with the corrected velocity field given as 
, , n , m + l -  n , m -  --u aV(bp), 

and the next iterate for the pressure is given by 
v p n , m  = vpn, m -  1 

where op is an underrelaxation factor. These equations are solved until norms of u"""+' - u " * ~  
and V ungm satisfy appropriate constraints; then the flow variables can be advanced to the 
next time level, e.g. un+l  = u " * ~ + ~  --u - n , M  . The algorithm is shown in Figure 2. Since 
11 v . ,,". m +  1 11 w IlO(Gp) 11, a sufficient number of inner iterations must be taken to ensure the 
velocity divergence condition is satisfied to a specified tolerance. 

These equations are solved on a structured finite difference mesh with the flow variables 
collocated at the node points. The set of conservation equations is formulated in terms of 

at time level n, m=O 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

increment iteration counter, m=m+l 

calculate u ~ , ~ ,  E q . W  

calculate 6p,  Eq. ( lZ)  

calculate Eq.(13) 

calculate V P ~ . ~ ,  Eq.(14)  

Figure 2. Unsteady flow algorithm 
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a non-orthogonal generalized co-ordinate system (5 ,  q). Second-order centred differencing of the 
momentum convection terms was used for the following calculations. No artificial dissipation 
was needed because the Reynolds numbers of the test problems were relatively small. 

Each discretized implicit equation is solved by using Stone's iterative elimination method.' 
Finite differences on a structured grid are used so the equation matrices are banded and sparse. 
Conjugate gradient methods (e.g. Ker~haw'~)  were not considered in the current study but can be 
used as an alternative to Stone's method. If the algebraic equation to be solved for the unknown + is given as 

CAI {*I = @I, (1 5 )  

where the vector R is known, then Stone's procedure consists of modifying the matrix [ A ]  by 
adding a 'small' (matrix spectral norm of N is less than norm of A )  matrix [ N ]  so that [ A  + N ]  is 
easily factorized into the lower-upper product [L,]  [ U s ]  and the components of L, and U s  are 
calculated in a simple manner15 and involve less arithmetic than the standard LU decomposition 
of A. The iterative procedure for solving equation (15) is given as 

[ A  + N1 (4'= CLSl [U,l(d)'= - CAI {*Ir ,  (16) 
where r is an iteration counter and d' = I,P ' - yY. The detailed components of L, and U s  can be 
found in Reference 13 or 15. Equation (16) is solved until successive iterates satisfy a constraint. 

DISCUSSION 

Equation (12) assumes that V -u"* m+l = -R(dp), so as 6 p  iteratively approaches zero (or a small 
number relative to the problem at hand) for m= 1, . . . , M - 1, then the divergence at the inner 
iteration (n, m+ 1) also approaches zero; R can remain a constant for this process. This is 
analogous to the time-accurate pseudo-compressibility approach given by P e ~ r e t , ~  where R plays 
the role of the pseudo-compressibility parameter which is a constant in Reference 5. 

The number of inner iterations, M ,  can be chosen so that the desired accuracy is achieved. For 
example, M can be selected to ensure that a norm of the velocity divergence satisfies a constraint 
as shown in Figure 2. 

Explicit projection-type methods require the solution of the momentum equations for a provi- 
sional velocity field u"+ l'' = u" + . . . and a Poisson equation for dp, V aV(6p) = V * u"+ liZ. The 
solution of the explicit equation is trivial. Iteration or matrix inversion is not required to obtain 
the provisional velocities. The computer work required for this segment of calculations is written 
as W,. The computer work required to solve the Poisson equation is written as W,. A matrix 
inversion must be performed to solve this Poisson equation and so Wp% W,. Semi-implicit 
methods require the solution of a matrix equation for the provisional velocity field. The amount 
of work required is written as a multiple of the explicit solution work, cSi W,, where cSi is some 
number greater than one (the banded matrix corresponding to the semi-implicit momentum 
equations requires more arithmetic to invert than the diagonal matrix corresponding to the 
explicit momentum equations). The work required to invert the Poisson equation is again 
written as W,. The work for the implicit Helmholtz pressure algorithm is written as 
(M-l)(chiWm+c,,W,), where chiwm is the work required to perform one or two Stone 
iterations on the algebraic system representing the implicit momentum equations and Chp W m  is 
the work required for 'several' Stone iterations on the algebraic system representing the 
Helmholtz pressure equation. 'Several' depends on the size of R.  Five to 10 iterations will 
usually be more than sufficient for most flow calculations. A complete matrix inversion is not 
performed on these equations, only several iterations via Stone's method.I3 The factor M - 1 



8 M. WILLIAMS 

arises because this procedure must be repeated several times. Multiple inner iterations per time 
step are required in the current unsteady flow algorithm because of the implicit nature of the 
scheme. The Helmholtz pressure equation and the momentum equations must be solved several 
times so that the velocity divergence condition and the momentum equations are simultaneously 
satisjied at a time level n + 1. This is the same idea behind Peyret's5 implicit scheme. 

In general, semi-implicit projection schemes require more work per time step than explicit 
schemes. However, larger time steps and more robust performance are obtained by using a semi- 
implicit method. The advantage of a fully implicit scheme is that (in principle) larger time steps 
can be used and more robust performace is achieved compared to explicit or semi-implicit 
schemes. This is an important advantage when solving complicated, three-dimensional or 
turbulent problems, If ( M -  1) (chi W, + chp W,) > (csi W, + Wp), then the Helmholtz implicit 
algorithm will be more expensive per time level than the semi-implicit scheme. I€, however, 
( M  - 1) (chi W, + chp W,) < (cSi W, + Wp), then the Helmholtz implicit algorithm will be less ex- 
pensive. More specific statements about the speed or efficiency of the unsteady algorithm 
based on the Helmholtz pressure equation and a time-implicit discretization, relative to other 
algorithms, can only be made after more experience is gained in the use of the algorithm 
and careful comparisons with different schemes are made. 

It should be noted that a time-implicit scheme based on traditional Poisson projection 
methods would require ( M  - 1) (csi W,  + W p )  units of work to be performed before advancing to 
the next time level. Clearly, such a scheme would be expensive because of the number of matrix 
inversions involved. This is probably why fully time-implicit projection methods based on the 
solution of a Poisson equation have not been used. 

UNSTEADY TEST PROBLEM 

An exact solution to the incompressible Navier-Stokes equations for a unit Reynolds number is 
given by Pearson16 as 

u= -cos(x)sin(y)e-2', v=sin(x)c~s(y)e-~', 

The performance of the present method is evaluated by solving this test problem (sometimes 
called a Taylor problem'). 

The Navier-Stokes equations are numerically solved by the present method in a square 
domain of dimensions (n/2, n/2). The computational grid is uniform and has 21 x 21 node points. 
Calculations were performed for time steps (At) of 0~002,0~004,0~01 and 0.02. R was set equal to 
5At and the pressure underrelaxation factor wp was set to 0.9. The evolution of the numerical 
error as a function of the time step At is given in Figure 3. The number of inner iterations per time 
step used for these calculations was five (m= 1,2,3,4; M = 5). The number of inner iterations used 
was manually (and somewhat arbitrarily) chosen so that the velocity divergence error after the 
first time step was less than 0.01. The inner iteration process for a time step equal to 0.01 is listed 
in Table I. This table shows how the numerical error evolves as the inner iteration index cycles 
from m = 1 to 4. The numerical error is defined as 1 I jk -fli I /I I j j ;  1, where f is the analytical 
solution defined by equation (17), fji is the calculated numerical value and the summation is over 
all interior nodes. The subscripts jk are node counters. The numerical errors are comparable to 
the results of Kim and Moin7 and Braza et aL6 The current algorithm spends about 15% of its 
computer-processing time solving the pressure equation. 

(17) 
13, p = 0.5 sin(2x) e-", a,,p = 0.5 sin(2y) 
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Figure 3. Solution error at t=0*2 for unsteady test problem 

Table I. Listing of iterative process for a time step of 0.01 and M = 5 

I 

n, m, 
time inner t ,  Error Error Error 
level iteration time Error u Error v a*F aYP v*u 

1 

2 

19 
19 
19 
19 
19 

20 
20 
20 
20 
20 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

0.01ooo m 
0120 x lo-’ 
0.943 x lo-’ 
0.793 x lo-’  
0.697 x lo-’ 

0.02000 0.166 x l o - ’  
0710 x lo-’ 
0537 x 
0.453 x lo-’ 
0.417 x lo-* 

019000 0.202 x lo-’ 
0.217 x 
0.162 x 
0.117 x 10-3 
o-iisx 10-3 

0.2ooOo 0.202 x 10- l 
0.231 x 
0.180 x 
0.145 x lo-’ 
0.143 x lo-’ 

0.000 
0120 x 10- l 
0950 x 
0.785 x lo-’ 
0.692 x lo-’  
0.166 x lo- ’  
0.691 x lo-’ 
0321 x 
0.446 x lo-’ 
0.414 x lo-’ 

0.202 x 10- 

0.162 x 
0.992 x lo-* 

0.202 x lo- ’  
0.151 x 1 O - j  
0.167 x 

0.134 x 

0.123 10-3 

0.102 10- 3 

0.131 x 10-3 

m 
0377 x 10-2 
0.691 x lo-’ 
0.922 x 
0.109 x lo-’ 
0.128 x lo-’ 
0.106 x lo-‘ 
0857 x lo-* 
0.705 x lo-’ 
0.599 x lo-’ 

0.206 x 
0.149 x 1 O - j  
0.138 x 
0.155 x 
0.163 x 

0.207 x lo-’ 
0.152 x 
0.145 x 
0.161 x 
0.169 x 

m 
0383 x lo-’ 
0.705 x lo-’ 
0.935 x lo-’ 
0.110 x 10- l 

0124 x lo-’ 
0102 x 10-1 
0826 x lo-’ 
0680 x lo-’ 
0576 x lo-’ 

0.614 x 
0.559 x lo-’ 
0449 x 10- 3 
0.401 x 10-3 
0374 x 10- 3 

0.566~ 10-3 

o m x i o - 3  

0.619 x 

0.455 x 

0.381 x 

o m  
0.248 x lo-’ 
0.192 x lo-’ 
0137 x lo-’ 
0.979 x lo-’  
0.703 x lo-’ 
0178 x lo-’ 
0116 x lo-’ 
0846 x 10- ’ 
0603 x lo-’ 

0.598 x 
0.365 x 
0392 x 10-3 
0117 x 10-3 
0747 x 10-4 

0.589 x 
0.352 x lo-’ 
0.377 x 
0.113 x 
0.728 x 
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UNSTEADY FLOW PAST A CYLINDER 

A practical application of the current method is the analysis of the laminar transient flow past 
a two-dimensional circular cylinder. A comprehensive experimental study has been carried out by 
Coutanceau and Bouard;' the current calculation results will be compared with their experi- 
mental data. The particular case examined here is for a Reynolds number (based on the cylinder 
diameter) of about 40. 

The computational flow domain and boundary conditions are indicated in Figure 4. A non- 
uniform mesh of 51 x 41 grid points was used to discretize the flow domain. A time step equal to 
0.1 was used. Twenty inner iterations were used for the initial time step. Ten inner iterations per 
time step were used for the subsequent time steps. This maintained the sum over the interior grid 

r/d=8, u,v fixed 

upstream r/d=1/2, u=v=O 

s y m m e t r y  

Figure 4. Computational domain for cylinder 
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Figure 5. Drag coefficients for cylinder 
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points of the absolute value of velocity divergence to a level less than 0.05. Changing the number 
of inner iterations to five instead of 10 (with 20 for the initial time step) did not significantly 
change the results but the velocity divergence error was slightly higher than 0.05 at the 
completion of the second time cycle. General-purpose computer codes that use the current 
algorithm should probably include computer logic to monitor various residuals and automati- 
cally vary the number of inner iterations performed at each time cycle so that inner iterations 
beyond those required to meet some convergence criteria are not taken. 

R was taken to be 0.1 and w,=0.95. The initial flow at t = O  was assumed to be the potential 
flow past a cylinder. The far-field boundary velocities were specified as being equal to the 
potential flow velocities. In the experiment" the cylinder was impulsively started in a container of 
still fluid. 

The pressure and total drag coefficient variation with time is indicated in Figure 5. The drag 
coefficient is defined as ~ D / P U ; ~ ~ L , , ~ ,  where D is the drag force on the cylinder and Lref is the 
cylinder diameter. The asymptotic pressure and total drag components (1.16 and 1-74 respect- 
ively) are slightly higher than the values given by Dennis and Chang" (0.998, 1.522). The 
calculated separation angle at t =  10 is about 3% higher than the experimental value. 

The calculated evolution with time of the cylinder closed-wake length is shown in Figure 6. The 
calculated results are compared with the experimental data of Coutanceau and Bouard." The 
agreement is good, A finer grid should be used if it is desired to more accurately resolve the 
detailed flow structure of the cylinder flow. 
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Figure 6. Evolution with time of the cylinder wake: -, present results; x , Coutanceau and Bouard" (h =0.12; h is 
the ratio of the cylinder diameter to the outer boundary diameter) 
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CONCLUSIONS 

A time-accurate, implicit, iterative scheme based on the Helmholtz pressure equation was 
developed and successfully applied to an unsteady Taylor problem and the unsteady laminar flow 
past a circular cylinder. The algorithm should be useful for a variety of problems including 
fluid-structure interaction and unsteady heat transfer, and can be adapted to spectral, finite- 
element and finite volume Navier-Stokes formulations. 
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